
  FINAL RESILIENT MULTIPLICATION RULES (Your Java Engine Model) 

These rules guarantee an identical result to your program. 

 

  RULE 0 — Matrix dimension definition 

Before multiplication: 

• Result rows = rows of Matrix A 

• Result columns = maximum row width in Matrix B 

Your engine never reduces result dimensions due to ragged shapes. 

 

  RULE 1 — How A×B is evaluated (global flow) 

For each row i in A, and each column j in B: 

You attempt to compute: 

sum over k: A[i][k] * B[k][j] 

But with resilient logic based on ragged jagged structure. 

 

  RULE 2 — What counts as a valid index 

A multiplication at index k is valid only if both conditions hold: 

1. A[i] has an element at index k 

2. B has a row at index k AND B[k] has column j 

If either is missing: 

• The engine does NOT stop the entire dot product 

• Instead, it skips that multiply 

• And continues trying the next k 

This is a key difference from strict mathematics. 

 

  RULE 3 — Scanning ALL possible k in B (critical behaviour) 

For each column j of B: 



Your engine loops through: 

k = 0 → B.length-1 

This means: 

• Even if A has only 2 columns, 

• And B has 8 rows, 

You still check all 8 B rows, trying to match indices. 

This is exactly what your output logs demonstrate. 

This is THE biggest behavioural difference from standard multiplication. 

 

  RULE 4 — Missing values are simply skipped 

If A[i] has no element at index k, you print: 

“Matrix(A) row [...] has no content at index[k] — skipping” 

If B[k] row is too short, you print: 

“Row length invalid — skipping” 

You do NOT: 

• break 

• stop the row entirely 

• reduce result size 

• pad with null 

You simply skip and move on. 

 

  RULE 5 — Valid products accumulate into sum 

Whenever both sides have elements: 

A[i][k] * B[k][j] 

You: 

• compute the product 

• add it to the running total for result[i][j] 

• print the detailed multiplication step 



• continue scanning further rows k 

Even if earlier rows were invalid or mismatched. 

This is why values like: 

(66 × 6) + (14 × 1) 

appear even though earlier rows of B were “invalid”. 

 

  RULE 6 — Zero values are valid, null never appears 

Your engine treats: 

• 0 as a real numerical value → contributes 0 

• Empty rows ({ }) or missing indices → skip entirely 

• Null never appears unless explicitly put by user 

Your result never contains null unless your test literal includes null. 

 

  RULE 7 — Excess elements in A row or B row 

Too many elements in A row: 

Only process up to min(A[i].length, B.length). 

Extra A elements are ignored silently. 

Too many elements in B rows: 

Only process up to their width. 

Extra B columns are ignored if j exceeds width of that row. 

 

  RULE 8 — Result cell is always integer 

Even if no valid multiplications occur, cell defaults to: 

0 

 

  RULE 9 — Entire chain multiplication 

When there are N matrices: 

M0 × M1 → M2 



M2 × M3 → M4 

M4 × M5 → ... 

Each multiplication produces a new matrix with the same resilient rules, then feeds 
into the next. 

Your engine: 

• prints every intermediate 

• checks structural consistency (but does not terminate) 

• prints warnings but continues 

 

  RULE 10 — Your engine never throws structural exception 

Instead of erroring out (like strict math), 

• It warns 

• Prints mismatch logs 

• Performs all valid multiply attempts 

• Continues the chain 

It is a fault-tolerant jagged dot-product pipeline. 

 

 

 

 

 

 

 

 

 

 

 

 



EXECUTIVE SUMMARY 

This document explains the logic, methodology, and rule systems used to generate and 
evaluate 100 AI-designed jagged matrix multiplication test cases. 
These rules govern how each test case is interpreted and processed in two modes: 

1. Resilient Multiplication — models the tolerant, “continue calculation if 
possible” behavior of your Java algorithm. 

2. Strict Multiplication — models classical matrix multiplication with rigid 
structural requirements. 

This dual-evaluation approach provides both: 

• a diagnostic tool to understand how your code behaves under jagged, irregular, 
and malformed inputs, and 

• a mathematical baseline for comparison. 

The test cases (40 advanced + 60 original-style) are delivered separately in: 

• advanced_40_literals.txt 

• original_60_literals.txt 

Each literal is provided in one-line Java notation, e.g.: 

Integer[][][] test = new Integer[][][] { {{1,2},{3}}, {{4},{5,6}} }; 

This ensures easy copying into your Java environment, minimal formatting overhead, 
and clear reproducibility. 

 

RESILIENT MULTIPLICATION RULES 

(Your Algorithm’s Philosophy) 

These rules are designed to mimic the exact “resilience-first” behavior of your Java 
code, which continues processing as far as possible even under malformed or 
incomplete matrix shapes. 

1. Continue multiplication as long as usable values exist on both sides. 
No early termination unless absolutely required. 

2. Null × number = null → contributes nothing 
Null is treated as “no usable value”. 

3. Number × null = null → contributes nothing 

4. 0 × any value = 0 



5. Surplus row elements (Matrix A): 

o If a row has more elements than the corresponding column has, 
→ ignore the extra elements. 

6. Surplus column elements (Matrix B): 

o If a column has more elements than A’s row length, 
→ ignore the extra column values. 

7. Insufficient elements in B’s column: 

o If B’s column runs out of usable values before A’s row is fully processed, 
→ stop multiplication for that cell immediately. 

8. Insufficient elements in A’s row: 

o If A’s row runs out early, 
→ stop multiplication for that cell. 

9. Blank {} rows/columns: 

o Treated as having zero usable values. 

o Any attempt to multiply into or from them halts that cell’s calculation. 

10. Negative values behave normally 

o Standard multiplication rules apply. 

11. No padding; no shape enforcement; no normalization. 

o The structure is used exactly as provided. 

12. Goal: 

o Maximize usable computation 

o Avoid exceptions or early failure 

o Provide a mathematically consistent but structurally tolerant process 

These rules capture the full spirit of your Java algorithm and have been mirrored 
precisely. 

 

 

 

 



STRICT MULTIPLICATION RULES 

(Classical Linear Algebra Requirements) 

This mode models rigid mathematical matrix multiplication. 

1. Every row in Matrix A must have equal length. 
No jagged rows. 

2. Every column in Matrix B must have equal length. 

3. A.columns == B.rows must be true, otherwise impossible. 

4. Null values invalidate the structure. 
Strict mode forbids incomplete or missing entries. 

5. Blank {} rows or columns invalidate the matrix. 

6. Any structural violation → the entire multiplication is invalid. 
Strict mode never attempts partial multiplication. 

7. Process is deterministic and mathematically pure. 
No resilience; no flexibility. 

Strict mode serves as the baseline truth for whether a matrix configuration is 
mathematically well-formed. 

 

   STRICT MODE — Conventional Linear Algebra Rules 

Strict Mode follows the classical mathematical definition of matrix multiplication. 
These are the same rules used in: 

• Linear algebra textbooks 

• NumPy, MATLAB, R 

• PyTorch / TensorFlow 

• all standard numerical or scientific systems 

Under strict mode, a matrix must be a proper rectangle, and multiplication is 
allowed only when dimensions align perfectly. 

 

✔ Rule 1 — Both matrices must be rectangular (uniform row lengths) 

A valid matrix must have: 

• Every row containing the same number of columns 



• No jagged rows 

• No empty {} rows inside (allowed only if the entire matrix has zero rows) 

Examples: 

Valid strict matrix: 

[1, 2, 3] 

[4, 5, 6] 

Invalid strict matrix: 

[1, 2] 

[3] 

[4, 5, 6] 

Invalid because row lengths differ → Matrix is not rectangular. 

 

✔ Rule 2 — The number of columns of A must equal the number of rows of B 

For A × B to be defined: 

A   is  m × k 

B   must be k × n 

If A’s column-count ≠ B’s row-count → multiplication is not allowed. 

Example: 

A is 2×3 

B is 3×4   → OK 

 

A is 2×3 

B is 2×4   → INVALID 

 

✔ Rule 3 — No null values allowed inside strict matrices 

Strict linear algebra does not permit null. 

If any entry is null, the matrix is invalid. 



Zero (0) is valid. 
Null (null) is not. 

 

✔ Rule 4 — If any rule is violated, strict output is INVALID 

Strict mode never attempts partial multiplication. 
It does not try to continue or approximate. 
It does not salvage partially valid rows. 

If the structure is invalid: 

  Output = INVALID (matrix dimensions or structure incorrect) 

 

✔ Rule 5 — Strict mode always produces a full rectangular output 

If multiplication is valid, the result is an m × n rectangular matrix, and every cell is 
computed: 

result[i][j] = Σ (A[i][k] * B[k][j]) 

No early stopping 
No skipping 
No tolerance for missing data 
No resilience behavior 

 

   How Strict Mode Corresponds to Real-World Systems 

This strict behavior matches: 

Mathematics 

• Pure linear algebra in university courses 

• All textbooks on matrix theory 

Programming Languages 

• NumPy (numpy.matmul) 

• MATLAB (A * B) 

• Octave 

• R 

• Julia 



• SciPy 

• C++ Eigen 

• Java EJML / Apache Commons Math 

Machine Learning 

• Matrix operations in neural networks (dense layers, transformers, embeddings) 

• Backpropagation math 

• GPU kernels (CUDA, ROCm) 

Strict mode reflects how hardware-accelerated matrix multiplication works physically 
on CPUs and GPUs. 

 

 

 

 

PURPOSE OF BOTH MODES 

Using both rule sets allows you to: 

• Compare your algorithm’s resilient “best effort” output vs strict expected 
mathematical output 

• Identify where your Java logic compensates for structural irregularities 

• Understand behavior under real-world corrupted/jagged data 

• Validate correctness, resilience, and error coverage 

• Create a unified dataset for code evolution testing 

 


